Computational search of small point sets with small rectilinear crossing number
نویسندگان
چکیده
Let cr(Kn) be the minimum number of crossings over all rectilinear drawings of the complete graph on n vertices on the plane. In this paper we prove that cr(Kn) < 0.380473 (
منابع مشابه
k-Sets, Convex Quadrilaterals, and the Rectilinear Crossing Number of Kn
We use circular sequences to give an improved lower bound on the minimum number of (≤ k)– sets in a set of points in general position. We then use this to show that if S is a set of n points in general position, then the number (S) of convex quadrilaterals determined by the points in S is at least 0.37533 ` n 4 ́ + O(n). This in turn implies that the rectilinear crossing number cr(Kn) of the com...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملOn the structure of sets attaining the rectilinear crossing number ∗
We study the structural properties of the point configurations attaining the rectilinear crossing number cr(Kn), that is, those n-point sets that minimize the number of crossings over all possible straight-edge embeddings of Kn in the plane. As a main result we prove the conjecture that such sets always have a triangular convex hull. The techniques developed allow us to show a similar result fo...
متن کاملToward the rectilinear crossing number of Kn: new drawings, upper bounds, and asymptotics
Scheinerman and Wilf [SW94] assert that “an important open problem in the study of graph embeddings is to determine the rectilinear crossing number of the complete graph Kn.” A rectilinear drawing of Kn is an arrangement of n vertices in the plane, every pair of which is connected by an edge that is a line segment. We assume that no three vertices are collinear, and that no three edges intersec...
متن کاملRecent developments on the number of ( ≤ k ) - sets , halving lines , and the rectilinear crossing number of Kn . Bernardo
We present the latest developments on the number of (≤ k)-sets and halving lines for (generalized) configurations of points; as well as the rectilinear and pseudolinear crossing numbers of Kn. In particular, we define perfect generalized configurations on n points as those whose number of (≤ k)-sets is exactly 3¡k+1 2 ¢ for all k ≤ n/3. We conjecture that for each n there is a perfect configura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Graph Algorithms Appl.
دوره 18 شماره
صفحات -
تاریخ انتشار 2014